Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Nutrients ; 15(6)2023 Mar 09.
Article in English | MEDLINE | ID: covidwho-2264787

ABSTRACT

A natural chalcone, cardamonin (2',4'-dihydroxy-6'-methoxychalcone; CDN) was isolated from the seeds of Alpinia katsumadai Hayata, which has been traditionally used to treat stomach aches. CDN has been reported to possess various pharmacological properties, including anticancer and anti-inflammatory effects. This study evaluated the antiviral activity of CDN against human coronavirus HCoV-OC43 and determined the mode of action in HCoV-OC43-infected human lung cell lines (MRC-5 and A549 cells). CDN significantly inhibited HCoV-OC43-induced cytopathic effects with an IC50 of 3.62 µM and a CC50 of >50 µM, resulting in a selectivity index of >13.81. CDN treatment reduced the level of viral RNA and the expression of spike and nucleocapsid proteins in HCoV-OC43-infected cells as determine through qRT-PCR and Western blot analysis. Additionally, the activation of p38 mitogen-activated protein kinase (MAPK) by anisomycin decreased viral protein expression, whereas an inhibitor of p38 MAPK signaling, SB202190, increased viral protein expression. CDN also amplified and extended the p38 MAPK signaling pathway in HCoV-OC43-infected cells. In conclusion, CDN inhibited HCoV-OC43 infection by activating the p38 MAPK signaling pathway and has potential as a therapeutic agent against human coronavirus.


Subject(s)
Chalcones , Coronavirus Infections , Coronavirus OC43, Human , Humans , Coronavirus OC43, Human/genetics , Chalcones/pharmacology , p38 Mitogen-Activated Protein Kinases/metabolism , Signal Transduction , Mitogen-Activated Protein Kinases/metabolism , Lung/metabolism , Viral Proteins
2.
Cell Cycle ; 21(22): 2379-2386, 2022 11.
Article in English | MEDLINE | ID: covidwho-1937590

ABSTRACT

Emetine is one of the most highly potent anti-SARS-CoV-2 agents ever identified. In addition to having strong anti-SARS-CoV-2 activities, emetine has other valuable therapeutic effects such as strong anti-inflammatory and anti-arterial pulmonary hypertension (APH) properties, which are suitable for the treatment of COVID-19. Its proper concomitant therapeutic effect has led researchers to test this compound in clinical trials to combat COVID-19. However, due to the risks of cardiac complications, very low doses of emetine have been used in different studies, which may not have significant therapeutic effects. The p38 MAPK signaling pathway is strongly highlighted as an important operator in cardiac cellular damages such as disruption of cardiac fibroblast function and myopathy/cardiomyopathy. Inhibition of this pathway by appropriate inhibitors has also been considered by scientists as a promising strategy for the treatment of fatal host-related hyper-inflammatory immune responses following SARS-CoV-2 infection. Although remarkable stimulatory effects of emetine on activation of the p38 MAPK pathway have been reported in recent studies and strong evidence suggests that this pathway plays an effective role in the emetine's toxicities, it has not been discussed yet that emetine induced cellular cardiac complications may be due to the activation of this critical pathway. Considering these points could lead to the finding of strategies for applying the valuable potential of emetine in the treatment of COVID-19 at low risks.


Subject(s)
COVID-19 Drug Treatment , Emetine , Humans , Emetine/pharmacology , SARS-CoV-2 , Signal Transduction , p38 Mitogen-Activated Protein Kinases/metabolism
3.
Life Sci ; 306: 120809, 2022 Oct 01.
Article in English | MEDLINE | ID: covidwho-1926760

ABSTRACT

The highly pathogenic, novel coronavirus disease (COVID-19) outbreak has emerged as a once-in-a-century pandemic with poor consequences, urgently calling for new therapeutics, cures, and supportive interventions. It has already affected over 250 million people worldwide; thereby, there is a need for novel therapies to alleviate the related complications. There is a paradigm shift in developing drugs and clinical practices to combat COVID-19. Several clinical trials have been performed or are testing diverse pharmacological interventions to alleviate viral load and complications such as cytokine release storm (CRS). Kinase-inhibitors have appeared as potential antiviral agents for COVID-19 patients due to their efficacy against CRS. Combination of kinase inhibitors with other therapies can achieve more efficacy against COVID-19. Based on the pre-clinical trials, kinase inhibitors such as Janus kinase-signal transducer and activator of transcription (JAK/STAT) inhibitors, Brutton's tyrosin kinase (BTK) inhibitors, p38 mitogen-activated protein kinases (p38 MAPK) inhibitors, Glycogen synthase kinase 3 (GSK-3) inhibitors can be a promising strategy against COVID-19. Kinase inhibitors possess crucial pharmacological properties for a successful re-purposing in terms of dual anti-inflammatory and anti-viral effects. This review will address the current clinical evidence and the newest discovery regarding the application of kinase inhibitors in COVID-19. An outlook on ongoing clinical trials (clinicaltrials.gov) and unpublished data is also presented here. Besides, Kinase inhibitors' function on COVID-19-mediated CRS is discussed.


Subject(s)
COVID-19 Drug Treatment , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Cytokine Release Syndrome , Glycogen Synthase Kinase 3 , Humans , Pandemics , Signal Transduction , p38 Mitogen-Activated Protein Kinases
4.
J Control Release ; 349: 118-132, 2022 09.
Article in English | MEDLINE | ID: covidwho-1914570

ABSTRACT

Cytokine storms are a primary cause of multiple organ damage and death after severe infections, such as SARS-CoV-2. However, current single cytokine-targeted strategies display limited therapeutic efficacy. Here, we report that peritoneal M2 macrophage-derived extracellular vesicles (M2-EVs) are multitarget nanotherapeutics that can be used to resolve cytokine storms. In detail, primary peritoneal M2 macrophages exhibited superior anti-inflammatory potential than immobilized cell lines. Systemically administered M2-EVs entered major organs and were taken up by phagocytes (e.g., macrophages). M2-EV treatment effectively reduced excessive cytokine (e.g., TNF-α and IL-6) release in vitro and in vivo, thereby attenuating oxidative stress and multiple organ (lung, liver, spleen and kidney) damage in endotoxin-induced cytokine storms. Moreover, M2-EVs simultaneously inhibited multiple key proinflammatory pathways (e.g., NF-κB, JAK-STAT and p38 MAPK) by regulating complex miRNA-gene and gene-gene networks, and this effect was collectively mediated by many functional cargos (miRNAs and proteins) in EVs. In addition to the direct anti-inflammatory role, human peritoneal M2-EVs expressed angiotensin-converting enzyme 2 (ACE2), a receptor of SARS-CoV-2 spike protein, and thus could serve as nanodecoys to prevent SARS-CoV-2 pseudovirus infection in vitro. As cell-derived nanomaterials, the therapeutic index of M2-EVs can be further improved by genetic/chemical modification or loading with specific drugs. This study highlights that peritoneal M2-EVs are promising multifunctional nanotherapeutics to attenuate infectious disease-related cytokine storms.


Subject(s)
Cytokine Release Syndrome , Extracellular Vesicles , Macrophages , MicroRNAs , Angiotensin-Converting Enzyme 2 , Animals , Cytokine Release Syndrome/drug therapy , Cytokines/metabolism , Endotoxins , Extracellular Vesicles/metabolism , Humans , Interleukin-6/metabolism , Macrophages/metabolism , MicroRNAs/metabolism , NF-kappa B/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Tumor Necrosis Factor-alpha/metabolism , p38 Mitogen-Activated Protein Kinases , COVID-19 Drug Treatment
5.
BMC Immunol ; 23(1): 25, 2022 05 23.
Article in English | MEDLINE | ID: covidwho-1857991

ABSTRACT

BACKGROUND: Signal transducer and activator of transcription 6 (STAT6) is an intracelluar transcriotion factor and NLRP3 (Nod-like receptor containing a pyrin domain 3) is a component of NLRP3 inflammasome in pyroptotic cells. There was increased activation of STAT6 and expression of NLRP3 in mice with murine acute lung injury (ALI). However, it is unknown their roles in the development of murine ALI. We in this study, investigated the effects of STAT6 signaling on murine ALI and pyroptosis in STAT6 knock-out (KO) mice and macrophages. RESULTS: STAT6 was activated in the lung tissues of mice 2 days after intratracheal treatmemt with 5 mg/kg LPS. Lack of STAT6 expression in KO mice induced more severe lung inflammation, associated with elevated neutrophil influx and expression of TNF-alpha, IL-6 and IL-1beta in the inflamed lung tissues. In addition, the expression of NLRP3, ASC (apoptosis-associated speck-like protein containing a CARD), p-p38 MAPK (p38 mitogen-activated protein kinase) and ratio of LC3-II/I (microtubule-associated protein-1 light chain-3) was increased, accompanied with the increased polarization of Siglec-F(-) subtype macrophages in KO mice with ALI. Further studies in bone marrow-derived macrophages (BMDMs) revealed that lack of STAT6 increased the expression of NLRP3 and p-p38 MAPK, in association with elevated expression of TNF-alpha, IL-1beta and Calreticulin in LPS-treated KO BMDMs. CONCLUSIONS: Lack of STAT6 exacerbated murine ALI through improving the expression of NLRP3 and activation of p38 MAPK in macrophages. STAT6 has an immune suppressive role in the development of ALI and would be a promising therapeutic target in the treatment of ALI and possibly among patients with acute respiratory distress syndrome (ARDS).


Subject(s)
Acute Lung Injury , NLR Family, Pyrin Domain-Containing 3 Protein , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Animals , Humans , Inflammasomes/metabolism , Lipopolysaccharides/pharmacology , Macrophages , Mice , Mice, Inbred C57BL , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , STAT6 Transcription Factor/genetics , STAT6 Transcription Factor/metabolism , STAT6 Transcription Factor/pharmacology , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
6.
Am J Obstet Gynecol ; 227(2): 277.e1-277.e16, 2022 08.
Article in English | MEDLINE | ID: covidwho-1757079

ABSTRACT

BACKGROUND: COVID-19 presents a spectrum of signs and symptoms in pregnant women that might resemble preeclampsia. Differentiation between severe COVID-19 and preeclampsia is difficult in some cases. OBJECTIVE: To study biomarkers of endothelial damage, coagulation, innate immune response, and angiogenesis in preeclampsia and COVID-19 in pregnancy in addition to in vitro alterations in endothelial cells exposed to sera from pregnant women with preeclampsia and COVID-19. STUDY DESIGN: Plasma and sera samples were obtained from pregnant women with COVID-19 infection classified into mild (n=10) or severe (n=9) and from women with normotensive pregnancies as controls (n=10) and patients with preeclampsia (n=13). A panel of plasmatic biomarkers was assessed, including vascular cell adhesion molecule-1, soluble tumor necrosis factor-receptor I, heparan sulfate, von Willebrand factor antigen (activity and multimeric pattern), α2-antiplasmin, C5b9, neutrophil extracellular traps, placental growth factor, soluble fms-like tyrosine kinase-1, and angiopoietin 2. In addition, microvascular endothelial cells were exposed to patients' sera, and changes in the cell expression of intercellular adhesion molecule 1 on cell membranes and von Willebrand factor release to the extracellular matrix were evaluated through immunofluorescence. Changes in inflammation cell signaling pathways were also assessed by of p38 mitogen-activated protein kinase phosphorylation. Statistical analysis included univariate and multivariate methods. RESULTS: Biomarker profiles of patients with mild COVID-19 were similar to those of controls. Both preeclampsia and severe COVID-19 showed significant alterations in most circulating biomarkers with distinctive profiles. Whereas severe COVID-19 exhibited higher concentrations of vascular cell adhesion molecule-1, soluble tumor necrosis factor-α receptor I, heparan sulfate, von Willebrand factor antigen, and neutrophil extracellular traps, with a significant reduction of placental growth factor compared with controls, preeclampsia presented a marked increase in vascular cell adhesion molecule-1 and soluble tumor necrosis factor-α receptor I (significantly increased compared with controls and patients with severe COVID-19), with a striking reduction in von Willebrand factor antigen, von Willebrand factor activity, and α2-antiplasmin. As expected, reduced placental growth factor, increased soluble fms-like tyrosine kinase-1 and angiopoietin 2, and a very high soluble fms-like tyrosine kinase-1 to placental growth factor ratio were also observed in preeclampsia. In addition, a significant increase in C5b9 and neutrophil extracellular traps was also detected in preeclampsia compared with controls. Principal component analysis demonstrated a clear separation between patients with preeclampsia and the other groups (first and second components explained 42.2% and 13.5% of the variance), mainly differentiated by variables related to von Willebrand factor, soluble tumor necrosis factor-receptor I, heparan sulfate, and soluble fms-like tyrosine kinase-1. Von Willebrand factor multimeric analysis revealed the absence of von Willebrand factor high-molecular-weight multimers in preeclampsia (similar profile to von Willebrand disease type 2A), whereas in healthy pregnancies and COVID-19 patients, von Willebrand factor multimeric pattern was normal. Sera from both preeclampsia and severe COVID-19 patients induced an overexpression of intercellular adhesion molecule 1 and von Willebrand factor in endothelial cells in culture compared with controls. However, the effect of preeclampsia was less pronounced than the that of severe COVID-19. Immunoblots of lysates from endothelial cells exposed to mild and severe COVID-19 and preeclampsia sera showed an increase in p38 mitogen-activated protein kinase phosphorylation. Patients with severe COVID-19 and preeclampsia were statistically different from controls, suggesting that both severe COVID-19 and preeclampsia sera can activate inflammatory signaling pathways. CONCLUSION: Although similar in in vitro endothelial dysfunction, preeclampsia and severe COVID-19 exhibit distinctive profiles of circulating biomarkers related to endothelial damage, coagulopathy, and angiogenic imbalance that could aid in the differential diagnosis of these entities.


Subject(s)
Biomarkers , COVID-19 , Pre-Eclampsia , Angiopoietin-2 , Biomarkers/blood , COVID-19/diagnosis , Endothelial Cells , Female , Heparitin Sulfate , Humans , Intercellular Adhesion Molecule-1 , Placenta Growth Factor , Pre-Eclampsia/diagnosis , Pregnancy , Tumor Necrosis Factor-alpha , Vascular Cell Adhesion Molecule-1 , Vascular Endothelial Growth Factor Receptor-1 , p38 Mitogen-Activated Protein Kinases , von Willebrand Factor
7.
J Virol ; 96(5): e0208621, 2022 03 09.
Article in English | MEDLINE | ID: covidwho-1736026

ABSTRACT

Coronavirus infections induce the expression of multiple proinflammatory cytokines and chemokines. We have previously shown that in cells infected with gammacoronavirus infectious bronchitis virus (IBV), interleukin 6 (IL-6), and IL-8 were drastically upregulated, and the MAP kinase p38 and the integrated stress response pathways were implicated in this process. In this study, we report that coronavirus infection activates a negative regulatory loop that restricts the upregulation of a number of proinflammatory genes. As revealed by the initial transcriptomic and subsequent validation analyses, the anti-inflammatory adenine-uridine (AU)-rich element (ARE)-binding protein, zinc finger protein 36 (ZFP36), and its related family members were upregulated in cells infected with IBV and three other coronaviruses, alphacoronaviruses porcine epidemic diarrhea virus (PEDV), human coronavirus 229E (HCoV-229E), and betacoronavirus HCoV-OC43, respectively. Characterization of the functional roles of ZFP36 during IBV infection demonstrated that ZFP36 promoted the degradation of transcripts coding for IL-6, IL-8, dual-specificity phosphatase 1 (DUSP1), prostaglandin-endoperoxide synthase 2 (PTGS2) and TNF-α-induced protein 3 (TNFAIP3), through binding to AREs in these transcripts. Consistently, knockdown and inhibition of JNK and p38 kinase activities reduced the expression of ZFP36, as well as the expression of IL-6 and IL-8. On the contrary, overexpression of mitogen-activated protein kinase kinase 3 (MKK3) and MAPKAP kinase-2 (MK2), the upstream and downstream kinases of p38, respectively, increased the expression of ZFP36 and decreased the expression of IL-8. Taken together, this study reveals an important regulatory role of the MKK3-p38-MK2-ZFP36 axis in coronavirus infection-induced proinflammatory response. IMPORTANCE Excessive and uncontrolled induction and release of proinflammatory cytokines and chemokines, the so-called cytokine release syndrome (CRS), would cause life-threatening complications and multiple organ failure in severe coronavirus infections, including severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS) and COVID-19. This study reveals that coronavirus infection also induces the expression of ZFP36, an anti-inflammatory ARE-binding protein, promoting the degradation of ARE-containing transcripts coding for IL-6 and IL-8 as well as a number of other proteins related to inflammatory response. Furthermore, the p38 MAP kinase, its upstream kinase MKK3 and downstream kinase MK2 were shown to play a regulatory role in upregulation of ZFP36 during coronavirus infection cycles. This MKK3-p38-MK2-ZFP36 axis would constitute a potential therapeutic target for severe coronavirus infections.


Subject(s)
Coronavirus Infections/metabolism , Interleukin-6/metabolism , Interleukin-8/metabolism , Tristetraprolin/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Adenine/metabolism , Animals , Cell Line , Chlorocebus aethiops , Coronavirus Infections/genetics , Gene Expression Regulation , Humans , Infectious bronchitis virus/metabolism , Infectious bronchitis virus/pathogenicity , Interleukin-6/genetics , Interleukin-8/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Transcriptional Activation , Up-Regulation , Uridine/metabolism , Vero Cells
8.
Am J Respir Cell Mol Biol ; 66(3): 323-336, 2022 03.
Article in English | MEDLINE | ID: covidwho-1714501

ABSTRACT

Administration of high concentrations of oxygen (hyperoxia) is one of few available options to treat acute hypoxemia-related respiratory failure, as seen in the current coronavirus disease (COVID-19) pandemic. Although hyperoxia can cause acute lung injury through increased production of superoxide anion (O2•-), the choice of high-concentration oxygen administration has become a necessity in critical care. The objective of this study was to test the hypothesis that UCP2 (uncoupling protein 2) has a major function of reducing O2•- generation in the lung in ambient air or in hyperoxia. Lung epithelial cells and wild-type; UCP2-/-; or transgenic, hTrx overexpression-bearing mice (Trx-Tg) were exposed to hyperoxia and O2•- generation was measured by using electron paramagnetic resonance, and lung injury was measured by using histopathologic analysis. UCP2 expression was analyzed by using RT-PCR analysis, Western blotting analysis, and RNA interference. The signal transduction pathways leading to loss of UCP2 expression were analyzed by using IP, phosphoprotein analysis, and specific inhibitors. UCP2 mRNA and protein expression were acutely decreased in hyperoxia, and these decreases were associated with a significant increase in O2•- production in the lung. Treatment of cells with rhTrx (recombinant human thioredoxin) or exposure of Trx-Tg mice prevented the loss of UCP2 protein and decreased O2•- generation in the lung. Trx is also required to maintain UCP2 expression in normoxia. Loss of UCP2 in UCP2-/- mice accentuated lung injury in hyperoxia. Trx activates the MKK4-p38MAPK (p38 mitogen-activated protein kinase)-PGC1α (PPARγ [peroxisome proliferator-activated receptor γ] coactivator 1α) pathway, leading to rescue of UCP2 and decreased O2•- generation in hyperoxia. Loss of UCP2 in hyperoxia is a major mechanism of O2•- production in the lung in hyperoxia. rhTrx can protect against lung injury in hyperoxia due to rescue of the loss of UCP2.


Subject(s)
Lung/metabolism , Oxygen/metabolism , Thioredoxins/metabolism , Uncoupling Protein 2/metabolism , Animals , COVID-19/metabolism , COVID-19/therapy , Cell Line , Humans , Hyperoxia/metabolism , Lung/cytology , MAP Kinase Kinase 4/genetics , MAP Kinase Kinase 4/metabolism , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Oxygen/toxicity , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Phosphorylation , Signal Transduction , Superoxides/metabolism , Thioredoxins/genetics , Thioredoxins/pharmacology , Uncoupling Protein 2/genetics , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
9.
Stem Cell Reports ; 17(3): 538-555, 2022 03 08.
Article in English | MEDLINE | ID: covidwho-1692861

ABSTRACT

To date, the direct causative mechanism of SARS-CoV-2-induced endotheliitis remains unclear. Here, we report that human ECs barely express surface ACE2, and ECs express less intracellular ACE2 than non-ECs of the lungs. We ectopically expressed ACE2 in hESC-ECs to model SARS-CoV-2 infection. ACE2-deficient ECs are resistant to the infection but are more activated than ACE2-expressing ones. The virus directly induces endothelial activation by increasing monocyte adhesion, NO production, and enhanced phosphorylation of p38 mitogen-associated protein kinase (MAPK), NF-κB, and eNOS in ACE2-expressing and -deficient ECs. ACE2-deficient ECs respond to SARS-CoV-2 through TLR4 as treatment with its antagonist inhibits p38 MAPK/NF-κB/ interleukin-1ß (IL-1ß) activation after viral exposure. Genome-wide, single-cell RNA-seq analyses further confirm activation of the TLR4/MAPK14/RELA/IL-1ß axis in circulating ECs of mild and severe COVID-19 patients. Circulating ECs could serve as biomarkers for indicating patients with endotheliitis. Together, our findings support a direct role for SARS-CoV-2 in mediating endothelial inflammation in an ACE2-dependent or -independent manner.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Models, Biological , SARS-CoV-2/physiology , Toll-Like Receptor 4/metabolism , Angiotensin-Converting Enzyme 2/genetics , COVID-19/pathology , COVID-19/virology , Endothelial Cells/cytology , Endothelial Cells/metabolism , Gene Expression Profiling , Human Umbilical Vein Endothelial Cells , Humans , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , NF-kappa B/antagonists & inhibitors , NF-kappa B/genetics , NF-kappa B/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , SARS-CoV-2/isolation & purification , Severity of Illness Index , Single-Cell Analysis , Toll-Like Receptor 4/antagonists & inhibitors , Toll-Like Receptor 4/genetics , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
10.
Front Immunol ; 12: 781352, 2021.
Article in English | MEDLINE | ID: covidwho-1613552

ABSTRACT

After the outburst of the SARS-CoV-2 pandemic, a worldwide research effort has led to the uncovering of many aspects of the COVID-19, among which we can count the outstanding role played by inflammatory cytokine milieu in the disease progression. Despite that, molecular mechanisms that regulate SARS-CoV-2 pathogenesis are still almost unidentified. In this study, we investigated whether the pro-inflammatory milieu of the host affects the susceptibility of SARS-CoV-2 infection by modulating ACE2 and TMPRSS2 expression. Our results indicated that the host inflammatory milieu favors SARS-CoV-2 infection by directly increasing TMPRSS2 expression. We unveiled the molecular mechanism that regulates this process and that can be therapeutically advantageously targeted.


Subject(s)
GATA2 Transcription Factor/metabolism , Interleukin-1beta/metabolism , SARS-CoV-2/pathogenicity , Serine Endopeptidases/metabolism , Virus Internalization , A549 Cells , COVID-19 , Humans , p38 Mitogen-Activated Protein Kinases/metabolism
11.
Mol Neurobiol ; 59(1): 445-458, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1491383

ABSTRACT

In addition to respiratory complications produced by SARS-CoV-2, accumulating evidence suggests that some neurological symptoms are associated with the disease caused by this coronavirus. In this study, we investigated the effects of the SARS-CoV-2 spike protein S1 stimulation on neuroinflammation in BV-2 microglia. Analyses of culture supernatants revealed an increase in the production of TNF-α, IL-6, IL-1ß and iNOS/NO. S1 also increased protein levels of phospho-p65 and phospho-IκBα, as well as enhanced DNA binding and transcriptional activity of NF-κB. These effects of the protein were blocked in the presence of BAY11-7082 (1 µM). Exposure of S1 to BV-2 microglia also increased the protein levels of NLRP3 inflammasome and enhanced caspase-1 activity. Increased protein levels of p38 MAPK was observed in BV-2 microglia stimulated with the spike protein S1 (100 ng/ml), an action that was reduced in the presence of SKF 86,002 (1 µM). Results of immunofluorescence microscopy showed an increase in TLR4 protein expression in S1-stimulated BV-2 microglia. Furthermore, pharmacological inhibition with TAK 242 (1 µM) and transfection with TLR4 small interfering RNA resulted in significant reduction in TNF-α and IL-6 production in S1-stimulated BV-2 microglia. These results have provided the first evidence demonstrating S1-induced neuroinflammation in BV-2 microglia. We propose that induction of neuroinflammation by this protein in the microglia is mediated through activation of NF-κB and p38 MAPK, possibly as a result of TLR4 activation. These results contribute to our understanding of some of the mechanisms involved in CNS pathologies of SARS-CoV-2.


Subject(s)
Microglia/metabolism , Neuroinflammatory Diseases/virology , Spike Glycoprotein, Coronavirus/metabolism , Animals , Caspase 1/metabolism , Cell Line , Furans/pharmacology , Indenes/pharmacology , Inflammasomes/metabolism , Interleukin-1beta/genetics , Interleukin-6/metabolism , Mice , Microglia/pathology , NF-kappa B/metabolism , Neuroinflammatory Diseases/pathology , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism , Nitriles/pharmacology , RNA, Small Interfering , Recombinant Proteins/metabolism , Sulfonamides/pharmacology , Sulfones/pharmacology , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
13.
Eur J Pharmacol ; 908: 174374, 2021 Oct 05.
Article in English | MEDLINE | ID: covidwho-1322083

ABSTRACT

The efficacy of corticosteroids and its use for the treatment of SARS-CoV-2 infections is controversial. In this study, using data sets of SARS-CoV-2 infected lung tissues and nasopharyngeal swabs, as well as in vitro experiments, we show that SARS-CoV-2 infection significantly downregulates DUSP1 expression. This downregulation of DUSP1 could be the mechanism regulating the enhanced activation of MAPK pathway as well as the reported steroid resistance in SARS-CoV-2 infection. Moreover, chloroquine, an off labeled COVID-19 drug is able to induce DUSP1 and attenuate MAPK pathway; and is expected to improve sensitivity to steroid treatment. However, further mechanistic studies are required to confirm this effect.


Subject(s)
COVID-19 Drug Treatment , Chloroquine/pharmacology , Dual Specificity Phosphatase 1/genetics , Glucocorticoids/pharmacology , p38 Mitogen-Activated Protein Kinases/metabolism , Adult , Aged , COVID-19/pathology , COVID-19/virology , Case-Control Studies , Cells, Cultured , Chloroquine/therapeutic use , Datasets as Topic , Down-Regulation/drug effects , Drug Resistance/drug effects , Drug Resistance/genetics , Drug Synergism , Dual Specificity Phosphatase 1/metabolism , Fibroblasts , Glucocorticoids/therapeutic use , Healthy Volunteers , Humans , Lung/cytology , Lung/pathology , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/genetics , Middle Aged , Nasopharynx/virology , Off-Label Use , Primary Cell Culture , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity
14.
Int J Mol Sci ; 22(11)2021 May 24.
Article in English | MEDLINE | ID: covidwho-1273453

ABSTRACT

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are common and devastating clinical disorders with high mortality and no specific therapy. Lipopolysaccharide (LPS) is usually used intratracheally to induce ALI in mice. The aim of this study was to examine the effects of an ultramicronized preparation of palmitoylethanolamide (um-PEA) in mice subjected to LPS-induced ALI. Histopathological analysis reveals that um-PEA reduced alteration in lung after LPS intratracheal administration. Besides, um-PEA decreased wet/dry weight ratio and myeloperoxidase, a marker of neutrophils infiltration, macrophages and total immune cells number and mast cells degranulation in lung. Moreover, um-PEA could also decrease cytokines release of interleukin (IL)-6, interleukin (IL)-1ß, tumor necrosis factor (TNF)-α and interleukin (IL)-18. Furthermore, um-PEA significantly inhibited the phosphorylation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation in ALI, and at the same time decreased extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38/MAPK) expression, that was increased after LPS administration. Our study suggested that um-PEA contrasted LPS-induced ALI, exerting its potential role as an adjuvant anti-inflammatory therapeutic for treating lung injury, maybe also by p38/NF-κB pathway.


Subject(s)
Acute Lung Injury/drug therapy , Amides/pharmacology , Cytokines/metabolism , Ethanolamines/pharmacology , MAP Kinase Signaling System/drug effects , Palmitic Acids/pharmacology , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Amides/therapeutic use , Animals , Ethanolamines/therapeutic use , Immunohistochemistry , Inflammation/metabolism , Interleukin-18/metabolism , Interleukin-1beta/metabolism , Interleukin-6/metabolism , JNK Mitogen-Activated Protein Kinases/metabolism , Lipopolysaccharides/administration & dosage , Lipopolysaccharides/toxicity , Macrophages/drug effects , Macrophages/immunology , Male , Mast Cells/drug effects , Mast Cells/pathology , Mice , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , NF-KappaB Inhibitor alpha/metabolism , NF-kappa B/metabolism , Neutrophils/drug effects , Neutrophils/immunology , Palmitic Acids/therapeutic use , Peroxidase/metabolism , Tumor Necrosis Factor-alpha/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
15.
Biomolecules ; 11(5)2021 04 29.
Article in English | MEDLINE | ID: covidwho-1217049

ABSTRACT

Severely ill coronavirus disease 2019 (COVID-19) patients show elevated concentrations of pro-inflammatory cytokines, a situation commonly known as a cytokine storm. The p38 MAPK receptor is considered a plausible therapeutic target because of its involvement in the platelet activation processes leading to inflammation. This study aimed to identify potential natural product-derived inhibitory molecules against the p38α MAPK receptor to mitigate the eliciting of pro-inflammatory cytokines using computational techniques. The 3D X-ray structure of the receptor with PDB ID 3ZS5 was energy minimized using GROMACS and used for molecular docking via AutoDock Vina. The molecular docking was validated with an acceptable area under the curve (AUC) of 0.704, which was computed from the receiver operating characteristic (ROC) curve. A compendium of 38,271 natural products originating from Africa and China together with eleven known p38 MAPK inhibitors were screened against the receptor. Four potential lead compounds ZINC1691180, ZINC5519433, ZINC4520996 and ZINC5733756 were identified. The compounds formed strong intermolecular bonds with critical residues Val38, Ala51, Lys53, Thr106, Leu108, Met109 and Phe169. Additionally, they exhibited appreciably low binding energies which were corroborated via molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) calculations. The compounds were also predicted to have plausible pharmacological profiles with insignificant toxicity. The molecules were also predicted to be anti-inflammatory, kinase inhibitors, antiviral, platelet aggregation inhibitors, and immunosuppressive, with probable activity (Pa) greater than probable inactivity (Pi). ZINC5733756 is structurally similar to estradiol with a Tanimoto coefficient value of 0.73, which exhibits anti-inflammatory activity by targeting the activation of Nrf2. Similarly, ZINC1691180 has been reported to elicit anti-inflammatory activity in vitro. The compounds may serve as scaffolds for the design of potential biotherapeutic molecules against the cytokine storm associated with COVID-19.


Subject(s)
COVID-19/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Biological Products/metabolism , Coronavirus/pathogenicity , Cytokines/metabolism , Humans , Inflammation/metabolism , Molecular Docking Simulation , ROC Curve
16.
Food Funct ; 12(8): 3393-3404, 2021 Apr 26.
Article in English | MEDLINE | ID: covidwho-1201666

ABSTRACT

The global health emergency generated by coronavirus disease-2019 has prompted the search for immunomodulatory agents. There are many potential natural products for drug discovery and development to tackle this disease. One of these candidates is the Ganoderma lucidum fungal immunomodulatory protein (FIP-glu). In the present study, we clarify the influences of N-linked glycans on the improvement of anti-inflammatory activity and the potential mechanisms of action. Four proteins, including FIP-glu (WT) and its mutants N31S, T36N and N31S/T36N, were successfully expressed in P. pastoris, of which T36N and N31S/T36N were glycoproteins. After treatment with peptide-N-glycosidase F, the results of SDS-PAGE and Western blot showed that the glycan moiety was removed completely, indicating that the glycan moiety was N-linked. This was also demonstrated by UPLC-qTOF-MS. The cytotoxicity assay showed that N-linked glycans decreased the cytotoxicity of WT; while, the RT-qPCR assay showed that N-glycosylated WT regulated the mRNA expression of IL-6 and TGF-ß1. The Western blot results showed that N-glycosylated WT reduced the phosphorylation level of p38 MAPK. In conclusion, our findings revealed a novel mechanism by which N-glycosylation of FIP-glu improved its anti-inflammatory activity through the regulation of the expression of inflammatory cytokines in RAW264.7 via inhibition of p38 MAPK phosphorylation. It was proved that N-glycosylation significantly improved the functional properties of FIP-glu, providing theoretical and technical support for expanding the application of FIPs in the food and pharmaceutical industries.


Subject(s)
Fungal Proteins/pharmacology , Immunologic Factors/pharmacology , Immunomodulation/drug effects , Reishi , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Blotting, Western , Chromatography, High Pressure Liquid , Cytokines , Electrophoresis, Polyacrylamide Gel , Glycoproteins/metabolism , Glycosylation , Mass Spectrometry , Mice , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase , RAW 264.7 Cells , Real-Time Polymerase Chain Reaction , Saccharomycetales
17.
Sci Signal ; 14(673)2021 03 09.
Article in English | MEDLINE | ID: covidwho-1127536

ABSTRACT

IL-1ß is a key mediator of the cytokine storm linked to high morbidity and mortality from COVID-19, and IL-1ß blockade with anakinra and canakinumab during COVID-19 infection has entered clinical trials. Using mass cytometry of human peripheral blood mononuclear cells, we identified effector memory CD4+ T cells and CD4-CD8low/-CD161+ T cells, specifically those positive for the chemokine receptor CCR6, as the circulating immune subtypes with the greatest response to IL-1ß. This response manifested as increased phosphorylation and, thus, activation of the proinflammatory transcription factor NF-κB and was also seen in other subsets, including CD11c+ myeloid dendritic cells, classical monocytes, two subsets of natural killer cells (CD16-CD56brightCD161- and CD16-CD56dimCD161+), and lineage- (Lin-) cells expressing CD161 and CD25. IL-1ß also induced a rapid but less robust increase in the phosphorylation of the kinase p38 as compared to that of NF-κB in most of these immune cell subsets. Prolonged IL-1ß stimulation increased the phosphorylation of the transcription factor STAT3 and to a lesser extent that of STAT1 and STAT5 across various immune cell types. IL-1ß-induced production of IL-6 likely led to the activation of STAT1 and STAT3 at later time points. Interindividual heterogeneity and inhibition of STAT activation by anakinra raise the possibility that assays measuring NF-κB phosphorylation in response to IL-1ß in CCR6+ T cell subtypes could identify those patients at higher risk of cytokine storm and most likely to benefit from IL-1ß-neutralizing therapies.


Subject(s)
COVID-19/immunology , Interleukin-1beta/blood , T-Lymphocyte Subsets/immunology , COVID-19/blood , COVID-19/complications , Cytokine Release Syndrome/blood , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Flow Cytometry , Humans , Interleukin-1beta/pharmacology , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Monocytes/classification , Monocytes/immunology , Monocytes/metabolism , NF-kappa B/blood , Pandemics , Phosphorylation , Receptors, CCR6/blood , SARS-CoV-2 , STAT Transcription Factors/blood , STAT Transcription Factors/immunology , Signal Transduction/immunology , T-Lymphocyte Subsets/metabolism , p38 Mitogen-Activated Protein Kinases/blood
18.
Virus Res ; 280: 197901, 2020 04 15.
Article in English | MEDLINE | ID: covidwho-833197

ABSTRACT

Transmissible gastroenteritis virus (TGEV) primarily replicates in intestinal epithelial cells and causes severe damage to host cells, resulting in diarrhea. Surface NHE3 serves as the key regulatory site controlling electroneutral Na+ absorption. In this study, our results showed that the surface NHE3 content was significantly reduced following TGEV infection, whereas the total level of protein expression was not significantly changed, and NHE3 activity gradually decreased with prolonged infection time. We then inhibited SGLT1 expression by lentiviral interference and drug inhibition, respectively. Inhibition studies showed that the level of phosphorylation of the downstream key proteins, MAPKAPK-2 and EZRIN, in the SGLT1-mediated p38MAPK/AKt2 signaling pathway was significantly increased. The surface NHE3 expression was also significantly increased, and NHE3 activity was also significantly enhanced. These results demonstrate that a TGEV infection can inhibit NHE3 translocation and attenuates sodium-hydrogen exchange activity via the SGLT1-mediated p38MAPK/AKt2 signaling pathway, affecting cellular electrolyte absorption leading to diarrhea.


Subject(s)
Enterocytes/virology , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Sodium-Glucose Transporter 1/genetics , Sodium-Hydrogen Exchanger 3/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Cell Line , Proto-Oncogene Proteins c-akt/genetics , Sodium-Glucose Transporter 1/metabolism , Sodium-Hydrogen Exchanger 3/genetics , Swine , Transmissible gastroenteritis virus , p38 Mitogen-Activated Protein Kinases/genetics
19.
Int J Mol Sci ; 21(8)2020 Apr 23.
Article in English | MEDLINE | ID: covidwho-825269

ABSTRACT

Our previous study showed that glycyrrhizin (GLY) inhibited porcine epidemic diarrhea virus (PEDV) infection, but the mechanisms of GLY anti-PEDV action remain unclear. In this study, we focused on the anti-PEDV and anti-proinflammatory cytokine secretion mechanisms of GLY. We found that PEDV infection had no effect on toll-like receptor 4 (TLR4) protein and mRNA levels, but that TLR4 regulated PEDV infection and the mRNA levels of proinflammatory cytokines. In addition, we demonstrated that TLR4 regulated p38 phosphorylation but not extracellular regulated protein kinases1/2 (Erk1/2) and c-Jun N-terminal kinases (JNK) phosphorylation, and that GLY inhibited p38 phosphorylation but not Erk1/2 and JNK phosphorylation. Therefore, we further explored the relationship between high mobility group box-1 (HMGB1) and p38. We demonstrated that inhibition of HMGB1 using an antibody, mutation, or knockdown decreased p38 phosphorylation. Thus, HMGB1 participated in activation of p38 through TLR4. Collectively, our data indicated that GLY inhibited PEDV infection and decreased proinflammatory cytokine secretion via the HMGB1/TLR4-mitogen-activated protein kinase (MAPK) p38 pathway.


Subject(s)
Glycyrrhizic Acid/pharmacology , HMGB1 Protein/metabolism , Porcine epidemic diarrhea virus/drug effects , Porcine epidemic diarrhea virus/physiology , Signal Transduction/drug effects , Toll-Like Receptor 4/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Cells, Cultured , Chlorocebus aethiops , Coronavirus Infections/veterinary , Swine , Swine Diseases/metabolism , Swine Diseases/virology , Vero Cells
20.
EBioMedicine ; 58: 102898, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-665940

ABSTRACT

BACKGROUND: One-third of all deaths in hospitals are caused by sepsis. Despite its demonstrated prevalence and high case fatality rate, antibiotics remain the only target-oriented treatment option currently available. Starting from results showing that low-dose anthracyclines protect against sepsis in mice, we sought to find new causative treatment options to improve sepsis outcomes. METHODS: Sepsis was induced in mice, and different treatment options were evaluated regarding cytokine and biomarker expression, lung epithelial cell permeability, autophagy induction, and survival benefit. Results were validated in cell culture experiments and correlated with patient samples. FINDINGS: Effective low-dose epirubicin treatment resulted in substantial downregulation of the sphingosine 1-phosphate (S1P) degrading enzyme S1P lyase (SPL). Consequent accumulation and secretion of S1P in lung parenchyma cells stimulated the S1P-receptor type 3 (S1PR3) and mitogen-activated protein kinases p38 and ERK, reducing tissue damage via increased disease tolerance. The protective effects of SPL inhibition were absent in S1PR3 deficient mice. Sepsis patients showed increased expression of SPL, stable expression of S1PR3, and increased levels of mucin-1 and surfactant protein D as indicators of lung damage. INTERPRETATION: Our work highlights a tissue-protective effect of SPL inhibition in sepsis due to activation of the S1P/S1PR3 axis and implies that SPL inhibitors and S1PR3 agonists might be potential therapeutics to protect against sepsis by increasing disease tolerance against infections. FUNDING: This study was supported by the Center for Sepsis Control and Care (CSCC), the German Research Foundation (DFG), RTG 1715 (to M. H. G. and I. R.) and the National Institutes of Health, Grant R01GM043880 (to S. S.).


Subject(s)
Aldehyde-Lyases/metabolism , Epirubicin/administration & dosage , Sepsis/drug therapy , Sphingosine-1-Phosphate Receptors/metabolism , Animals , Autophagy , Cell Membrane Permeability , Cells, Cultured , Disease Models, Animal , Down-Regulation , Epirubicin/pharmacology , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Mice , Mucin-1/metabolism , Prospective Studies , Pulmonary Surfactant-Associated Protein D/metabolism , Random Allocation , Sepsis/etiology , Sepsis/metabolism , Sphingosine-1-Phosphate Receptors/genetics , Treatment Outcome , p38 Mitogen-Activated Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL